Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens.

Identifieur interne : 000268 ( Main/Exploration ); précédent : 000267; suivant : 000269

Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens.

Auteurs : Juanni Chen [République populaire de Chine] ; Lintong Wu [République populaire de Chine] ; Mei Lu [République populaire de Chine] ; Shasha Lu [République populaire de Chine] ; Ziyan Li [République populaire de Chine] ; Wei Ding [République populaire de Chine]

Source :

RBID : pubmed:32226420

Abstract

Engineered nanoparticles have provided a basis for innovative agricultural applications, specifically in plant disease management. In this interdisciplinary study, by conducting comparison studies using macroscale magnesium oxide (mMgO), we evaluated the fungicidal activity of MgO nanoparticles (nMgO) against soilborne Phytophthora nicotianae and Thielaviopsis basicola for the first time under laboratory and greenhouse conditions. In vitro studies revealed that nMgO could inhibit fungal growth and spore germination and impede sporangium development more efficiently than could macroscale equivalents. Indispensably, direct contact interactions between nanoparticles and fungal cells or nanoparticle adsorption thereof were found, subsequently provoking cell morphological changes by scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). In addition, the disturbance of the zeta potential and accumulation of various modes of oxidative stress in nMgO-exposed fungal cells accounted for the underlying antifungal mechanism. In the greenhouse, approximately 36.58 and 42.35% decreases in tobacco black shank and black root rot disease, respectively, could testify to the efficiency by which 500 μg/ml of nMgO suppressed fungal invasion through root irrigation (the final control efficiency reached 50.20 and 62.10%, respectively) when compared with that of untreated controls or mMgO. This study will extend our understanding of nanoparticles potentially being adopted as an effective strategy for preventing diversified fungal infections in agricultural fields.

DOI: 10.3389/fmicb.2020.00365
PubMed: 32226420
PubMed Central: PMC7080993


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens.</title>
<author>
<name sortKey="Chen, Juanni" sort="Chen, Juanni" uniqKey="Chen J" first="Juanni" last="Chen">Juanni Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Lintong" sort="Wu, Lintong" uniqKey="Wu L" first="Lintong" last="Wu">Lintong Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mei" sort="Lu, Mei" uniqKey="Lu M" first="Mei" last="Lu">Mei Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shasha" sort="Lu, Shasha" uniqKey="Lu S" first="Shasha" last="Lu">Shasha Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Ziyan" sort="Li, Ziyan" uniqKey="Li Z" first="Ziyan" last="Li">Ziyan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ding, Wei" sort="Ding, Wei" uniqKey="Ding W" first="Wei" last="Ding">Wei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32226420</idno>
<idno type="pmid">32226420</idno>
<idno type="doi">10.3389/fmicb.2020.00365</idno>
<idno type="pmc">PMC7080993</idno>
<idno type="wicri:Area/Main/Corpus">000232</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000232</idno>
<idno type="wicri:Area/Main/Curation">000232</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000232</idno>
<idno type="wicri:Area/Main/Exploration">000232</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens.</title>
<author>
<name sortKey="Chen, Juanni" sort="Chen, Juanni" uniqKey="Chen J" first="Juanni" last="Chen">Juanni Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Lintong" sort="Wu, Lintong" uniqKey="Wu L" first="Lintong" last="Wu">Lintong Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mei" sort="Lu, Mei" uniqKey="Lu M" first="Mei" last="Lu">Mei Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shasha" sort="Lu, Shasha" uniqKey="Lu S" first="Shasha" last="Lu">Shasha Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Ziyan" sort="Li, Ziyan" uniqKey="Li Z" first="Ziyan" last="Li">Ziyan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ding, Wei" sort="Ding, Wei" uniqKey="Ding W" first="Wei" last="Ding">Wei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing</wicri:regionArea>
<wicri:noRegion>Chongqing</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Engineered nanoparticles have provided a basis for innovative agricultural applications, specifically in plant disease management. In this interdisciplinary study, by conducting comparison studies using macroscale magnesium oxide (mMgO), we evaluated the fungicidal activity of MgO nanoparticles (nMgO) against soilborne
<i>Phytophthora nicotianae</i>
and
<i>Thielaviopsis basicola</i>
for the first time under laboratory and greenhouse conditions.
<i>In vitro</i>
studies revealed that nMgO could inhibit fungal growth and spore germination and impede sporangium development more efficiently than could macroscale equivalents. Indispensably, direct contact interactions between nanoparticles and fungal cells or nanoparticle adsorption thereof were found, subsequently provoking cell morphological changes by scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). In addition, the disturbance of the zeta potential and accumulation of various modes of oxidative stress in nMgO-exposed fungal cells accounted for the underlying antifungal mechanism. In the greenhouse, approximately 36.58 and 42.35% decreases in tobacco black shank and black root rot disease, respectively, could testify to the efficiency by which 500 μg/ml of nMgO suppressed fungal invasion through root irrigation (the final control efficiency reached 50.20 and 62.10%, respectively) when compared with that of untreated controls or mMgO. This study will extend our understanding of nanoparticles potentially being adopted as an effective strategy for preventing diversified fungal infections in agricultural fields.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32226420</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens.</ArticleTitle>
<Pagination>
<MedlinePgn>365</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.00365</ELocationID>
<Abstract>
<AbstractText>Engineered nanoparticles have provided a basis for innovative agricultural applications, specifically in plant disease management. In this interdisciplinary study, by conducting comparison studies using macroscale magnesium oxide (mMgO), we evaluated the fungicidal activity of MgO nanoparticles (nMgO) against soilborne
<i>Phytophthora nicotianae</i>
and
<i>Thielaviopsis basicola</i>
for the first time under laboratory and greenhouse conditions.
<i>In vitro</i>
studies revealed that nMgO could inhibit fungal growth and spore germination and impede sporangium development more efficiently than could macroscale equivalents. Indispensably, direct contact interactions between nanoparticles and fungal cells or nanoparticle adsorption thereof were found, subsequently provoking cell morphological changes by scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM). In addition, the disturbance of the zeta potential and accumulation of various modes of oxidative stress in nMgO-exposed fungal cells accounted for the underlying antifungal mechanism. In the greenhouse, approximately 36.58 and 42.35% decreases in tobacco black shank and black root rot disease, respectively, could testify to the efficiency by which 500 μg/ml of nMgO suppressed fungal invasion through root irrigation (the final control efficiency reached 50.20 and 62.10%, respectively) when compared with that of untreated controls or mMgO. This study will extend our understanding of nanoparticles potentially being adopted as an effective strategy for preventing diversified fungal infections in agricultural fields.</AbstractText>
<CopyrightInformation>Copyright © 2020 Chen, Wu, Lu, Lu, Li and Ding.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Juanni</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Lintong</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Mei</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shasha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Ziyan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Natural Products Pesticide, College of Plant Protection, Southwest University, Chongqing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">direct interaction</Keyword>
<Keyword MajorTopicYN="N">disease management</Keyword>
<Keyword MajorTopicYN="N">fungicidal activity</Keyword>
<Keyword MajorTopicYN="N">in vivo study</Keyword>
<Keyword MajorTopicYN="N">magnesium oxide nanoparticle</Keyword>
<Keyword MajorTopicYN="N">soilborne fungus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32226420</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.00365</ArticleId>
<ArticleId IdType="pmc">PMC7080993</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2017 Sep 11;8:1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28955350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2013 Feb;5(3):1137-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23301496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Nanotechnol. 2008 Mar;3(3):145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18654486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2008 Apr;71(7):1308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18194809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2012 Aug 6;8(15):2328-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22514121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 2005 May;99(5):986-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Jul 14;4:5408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25023938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2018 Nov;102(22):9781-9791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30302520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10953-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24175751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2015 Feb;99(3):1097-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25547832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2011 May 17;27(10):6059-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21500814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2017 Jun;73(6):1121-1126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27558672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 Nov 4;7(43):23848-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2018 Feb 7;10(5):4450-4461</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29314822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2018 Oct 31;66(43):11209-11220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30299956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2006 Jun;110(Pt 6):697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16765583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 Nov 23;8(46):31625-31637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27783499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Feb 8;54(3):893-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2015 Jan;161(Pt 1):18-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25332379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2007 Nov;28(31):4600-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24873-24886</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28679041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2018 May 30;10(21):17617-17629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29767946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jan;3(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2012 Jun 26;6(6):5164-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Nanotechnol. 2009 Dec;4(12):876-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19893513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2015 Oct;13(10):620-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26324094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2014 Jun 25;6(12):9100-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24853082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2013 May 27;9(9-10):1753-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22961674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2014 Mar 26;10(6):1171-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24344000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2016 Aug 10;64(31):6148-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27460439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2009 Dec 22;3(12):3909-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19911831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Dec 19;23(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30572666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2019 Jun 20;670:292-299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30903901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hazard Mater. 2016 Dec 15;320:1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27505288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21278-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26348829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2013 Oct 22;7(10):8972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24016217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2015 Aug 12;63(31):6876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26194089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Eng. 2013 Aug 21;7:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23965258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2014 Nov;98(11):1551-1554</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30699789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Apr 25;9:790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29922237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Aug 02;8:1332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28824670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2010 Jul 20;165(5):411-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Oct;2(5):971-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2010 Nov;94(11):1361-1365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30743626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small. 2012 Nov 5;8(21):3326-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22888058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Jun 13;7:894</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27379037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jun 29;12(6):e0180523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28662148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2012 Dec 11;28(49):16966-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23163331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nanoscale. 2014;6(3):1879-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2013 Mar;103(3):228-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23190116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1990 Jun 1;57(3):211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2210332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2005 Feb 21;(7):874-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15700066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2009 May;157(5):1619-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19185963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Nov 6;46(21):12178-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2013 Mar 26;7(3):1961-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23402533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2015 Sep 22;9(9):8655-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26256227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2007 Jun;71(2):282-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Mater. 2009 Jul;8(7):543-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Appl Mater Interfaces. 2016 Sep 14;8(36):24057-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27563750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Apr 25;8:703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28487678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2019 Mar;170:1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30554052</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Juanni" sort="Chen, Juanni" uniqKey="Chen J" first="Juanni" last="Chen">Juanni Chen</name>
</noRegion>
<name sortKey="Ding, Wei" sort="Ding, Wei" uniqKey="Ding W" first="Wei" last="Ding">Wei Ding</name>
<name sortKey="Li, Ziyan" sort="Li, Ziyan" uniqKey="Li Z" first="Ziyan" last="Li">Ziyan Li</name>
<name sortKey="Lu, Mei" sort="Lu, Mei" uniqKey="Lu M" first="Mei" last="Lu">Mei Lu</name>
<name sortKey="Lu, Shasha" sort="Lu, Shasha" uniqKey="Lu S" first="Shasha" last="Lu">Shasha Lu</name>
<name sortKey="Wu, Lintong" sort="Wu, Lintong" uniqKey="Wu L" first="Lintong" last="Wu">Lintong Wu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000268 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000268 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32226420
   |texte=   Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32226420" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024